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Huntington disease (HD) is an autosomal dominant neurodegenerative disease with complete penetrance. Although 
the understanding of the cellular mechanisms that drive neurodegeneration in HD and account for the characteris-
tic pattern of neuronal vulnerability is incomplete, defects in energy metabolism, particularly mitochondrial func-
tion, represent a common thread in studies of HD pathogenesis in humans and animal models. Here we review the 
clinical, biochemical, and molecular evidence of an energy deficit in HD and discuss the mechanisms underlying 
mitochondrial and related alterations.

Introduction
Huntington disease (HD) is an autosomal dominant neurode-
generative disease with age-dependent complete penetrance. HD 
is caused by a CAG repeat expansion in the first exon of the HTT 
gene that encodes huntingtin (Htt) (1, 2). Individuals who have 36 
CAG repeats or more may develop the clinical symptoms and signs 
of HD, including neuropsychiatric, motor, and cognitive abnor-
malities that cause a progressive loss of functional capacity and 
shortened life span. The clinical features of HD typically emerge in 
adulthood between 30 and 50 years of age, after which the disease 
progresses relentlessly over the next 15–20 years (3). Presymptom-
atic testing — preceded by genetic counseling according to inter-
nationally accepted guidelines — allows an at-risk person to assess 
their genetic status and thus predict whether a carrier will develop 
HD before he or she shows clinical symptoms and signs. Of impor-
tance, the presymptomatic phase in HD provides a unique window 
for therapeutic intervention and neuroprotection.
γ-Aminobutyric acid (GABAergic) medium spiny neurons of the 

striatum that contain enkephalin or substance P and project to the 
globus pallidus and substantia nigra are particularly vulnerable in 
HD and are key to the characteristic involuntary movements in this 
disease (4). The basis of the selective vulnerability of these neurons in 
HD remains elusive but may involve the reduced phosphorylation of 
Htt at serine 421 in the striatum (5), the specific localization of Rhes 
(Ras homolog enriched in striatum; a small guanine nucleotide–
binding protein partner of Htt) to the striatum (6), and/or the prefer-
ential vulnerability of the striatum to mitochondrial dysfunction (7). 
However, the neuropathology is ultimately more widespread, affect-
ing cortical neurons as well as the globus pallidus, substantia nigra, 
and brainstem. Understanding of the cellular mechanisms that drive 
neurodegeneration in HD and account for the characteristic pattern 
of neuronal vulnerability remains incomplete, but defects in energy 
metabolism, particularly mitochondrial function, represent a com-
mon thread in studies of HD pathogenesis in humans and animal 
models (7, 8). Here we provide an overview of clinical, biochemical, 
and molecular evidence of an energy deficit in HD, in both the brain 
and the peripheral organs. We also discuss the mechanisms underly-
ing mitochondrial and related alterations in the context of both a 

toxic gain-of-function from mutant Htt and the loss of function of 
normal Htt (Figure 1). The emerging availability of surrogate mark-
ers for clinical trials in HD, i.e., neuroimaging, neurophysiological, 
and neuropsychiatric changes that may be detectable as early as the 
presymptomatic stages of the disease (9), should open new avenues 
for testing promising therapeutic approaches to ameliorate the ener-
gy deficit while providing favorable safety profiles.

Normal function of Htt
Despite its identification almost two decades ago, understanding 
of the normal function of Htt protein is still incomplete. Although 
mainly found in the cytoplasm, Htt is also present in the nucleus 
(10, 11). Htt contains a series of up to 36 HEAT, α helix–loop–α 
helix, domains that mediate its interaction with numerous pro-
teins involved in gene expression, endocytosis, vesicle traffick-
ing, intracellular signaling, and metabolism (12–14). In particu-
lar, the role of Htt in transcription and intracellular transport is 
well established (15, 16). In the cytoplasm, Htt interacts with the 
dynein/dynactin complex and kinesin in microtubule-dependent 
transport of organelles in neurons, including mitochondria (17). 
For example, WT Htt enhances the vesicular transport of brain 
derived neurotrophic factor along microtubules (18). Htt may reg-
ulate transcription by shuttling transcription factors between the 
nucleus and the cytoplasm and by interacting with spliceosome-
related proteins (19). Studies in Htt knockout mice have shown 
that Htt is required for normal embryonic development and 
neurogenesis (20). Interestingly, expression of Htt is also essen-
tial for normal development in zebrafish because knock-down by 
antisense morpholino oligonucleotides leads to multiple develop-
mental abnormalities, including defects in cellular iron trafficking 
(21), which supports previous in vitro findings that Htt may be 
regulated by iron levels (22). Recently, it was shown that Htt also 
plays a role in dividing cells through the regulation of spindle ori-
entation during mitosis together with dynein/dynactin (23).

Pathophysiology of HD
Knockout of Htt is lethal in the mouse early in embryogenesis (24). 
Reduced Htt levels in knockout embryonic stem cells induce an 
abnormal distribution and morphology of organelles such as the 
endoplasmic reticulum, Golgi, and mitochondria (22). In addition, 
conditional Htt deletion in forebrain neurons at late embryonic or 
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early neonatal stages leads to a rapidly progressive neurodegenera-
tive phenotype (25). Reduced Htt levels have been shown to sen-
sitize neurons to the toxic effect of mutant Htt (26). Moreover, 
increased expression of WT Htt in transgenic mice protected neu-
rons from cell death (27). Similarly, increased expression of WT 
Htt reduced toxicity in peripheral cells overexpressing mutant Htt 
(28). Thus, these data indicate that a loss-of-function mechanism 
likely contributes to HD pathogenesis (29).

Nonetheless, cell and animal model systems as well as the 
direct correlation between length of CAG repeat and onset of HD 
strongly support the view that mutant HTT also possesses a new 
toxic gain of function (30). Like many neurodegenerative diseas-
es, HD is characterized by a cascade of events leading to neuronal 
cell death. While the sequence of these events remains unclear, 

several mechanisms implicate energy defects. These include tran-
scriptional dysregulation, changes in axonal transport, excitotox-
icity, signaling dysfunction, and neuronal aggregates (31). Here 
we focus on the role of mitochondrial dysfunction and altered 
energy metabolism secondary to mechanisms such as impaired 
trafficking and transcriptional interference (12, 15).

Evidence of energy deficit in HD
Brain energy deficit in HD. Brain energy metabolism has been a focus 
of HD research for many years due to several observations in both 
patients and models of the disease (32). In HD patients, there is 
strong evidence for reduced glucose consumption in the brain, espe-
cially in the basal ganglia, even in presymptomatic mutation carri-
ers (33–35). A brain energy deficit has also been suspected based on 

Figure 1
Summary figure indicating the main putative mechanisms by which mutated Htt causes mitochondrial dysfunction. Such mechanisms would 
result in decreased mitochondrial biogenesis, oxidative stress, ATP deficit, increased apoptosis, and, ultimately, a central and peripheral energy 
deficit. Energy-related therapeutic approaches that have been used in preclinical models and/or HD patients include (i) coenzyme Q10, (ii) cre-
atine, (iii) antioxidant therapies, (iv) anaplerotic therapies, and (v) PPAR agonists. Potential therapeutic targets are also shown, i.e., (vi) calcium 
homeostasis and (vii) mitochondrial transport. Apaf-1, apoptotic protease activating factor 1; NMDAR, N-Methyl-D-aspartic acid receptor; VDAC, 
voltage-dependent anion channel.
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increased lactate concentrations in the basal ganglia and the occipi-
tal cortex of HD patients (36, 37) as well as an elevated lactate-to-
pyruvate ratio in the CSF (38). Interestingly, reduced ATP synthe-
sis was found in immortalized HD striatal neuronal cell lines (39). 
However, ATP depletion was directly demonstrated in HD brain 
tissues only recently by employing a microwave fixation system that 
instantly inactivates brain enzymes in rodents to preserve in vivo 
levels of metabolites such as ATP and phosphocreatine (40). Vari-
ous mechanisms that underlie the energy deficit in HD brain have 
been proposed, including impaired oxidative phosphorylation (41), 
oxidative stress (42), impaired mitochondrial calcium handling (43), 
abnormal mitochondria trafficking (44), deregulation of key factors 
of mitochondrial biogenesis, such as the transcriptional coactiva-
tor PPARγ coactivator-1α (PGC-1α) (45), and decreased glycolysis 
(46). Furthermore, experimental evidence supports the view that 
excitatory glutaminergic inputs, which activate NMDA receptors in 
vulnerable medium spiny neurons, promote cell death by increasing 
energy demand in the setting of impaired energy capacity (47).

Energy deficit in HD: not only in the brain. The existence of a periph-
eral energy deficit in HD is an attractive hypothesis because it sug-
gests that clues to the disease pathogenesis may be detectable out-
side the brain (48). A peripheral mitochondrial defect is suggested 
by the observation that the ATP/ADP ratio in HD patient–derived 
lymphoblastoid cell lines is low, which mirrors the findings in stria-
tal cells that contain a full-length mutant Htt (49). Furthermore, 
the ATP/ADP ratio in lymphoblasts is inversely correlated with the 
length of the mutant polyglutamine tract, implying an increasingly 
severe limitation in mitochondrial ATP production with the poly-
glutamine expansion (49). Skeletal muscle, another differentiated 
excitable cell type with high metabolic demand, shows energetic 
disturbances in HD patients similar to those evident in HD striatal 
neurons (50, 51). Studies utilizing 31P-nuclear magnetic resonance 
spectroscopy (NMRS) have also revealed a reduced phosphocreatine/
inorganic phosphate ratio and low ATP levels in resting muscle of 
symptomatic HD patients and presymptomatic individuals (52, 53). 
These findings raise the possibility that the ubiquitous expression 
of mutant Htt may place other cell types at risk, particularly those 
with high metabolic demand. Notably, it was found that R6/2 mice, 
the most commonly used model of HD that contains a microin-
jected fragment from the 5′ end of the human HTT gene isolated 
from a phage genomic clone derived from an HD patient, develop 
cardiac dysfunction by 8 weeks of age, progressing to severe failure 
at 12 weeks (54). Moreover, weight loss has long been recognized in 
symptomatic HD patients (55) and is not explained by decreased 
food intake (56, 57), higher sedentary energy expenditure (58), or 
involuntary movements (59). Instead, there is evidence for an early 
hypermetabolic state in HD (60), in which weight loss is associated 
with a systemic metabolic defect at the presymptomatic stages of 
the disease. These findings of increased metabolic rate in HD were 
confirmed in several studies in patients (61, 62) and in mouse mod-
els (63, 64). Hypothalamic dysfunction has been suggested to con-
tribute to the negative energy balance in HD through the deregula-
tion of the ghrelin/leptin/orexin system (65, 66). However, increased 
ghrelin levels and decreased leptin levels in HD, both of which pro-
mote increased appetite and food intake, may reflect an adaptation 
to the hypercatabolism in HD, such that increased calorie intake is 
necessary to compensate for the decreased body weight (60).

Mutated Htt may exert direct deleterious effects on the metabo-
lism of other peripheral organs. A deregulation of adipose tissue 
metabolism in HD models involves transcriptional interference 

with PGC-1α (67). In addition, the brain is entirely dependent on 
energy substrates provided by peripheral organs, so it is conceiv-
able that early weight loss reflects the activation of compensatory 
mechanisms in peripheral organs in order to provide energetic 
substrates for a chronic brain energy deficit in HD (60). The slower 
disease progression in patients exhibiting a higher BMI at presen-
tation supports this hypothesis (68).

Biochemical evidence of energy dysfunction in HD
Is oxidative phosphorylation deficient in HD? Deficiency of respiratory 
chain complex II, i.e., succinate dehydrogenase (SDH), has been a 
focus of attention in HD due to the fact that the inhibition of SDH 
by 3-nitropropionate (3-NP) or malonate has been shown to closely 
mimic the neuropathology and clinical features of HD in humans, 
non-human primates (69), and rodents (70). The possible relevance 
of respiratory chain deficiency to the human disease is supported by 
postmortem studies of symptomatic patients showing marked defi-
ciency of complexes II and III and lesser deficiency of complex IV in 
the caudate or putamen, with normal levels in the frontal cortex or 
cerebellum (71–73). Benchoua and colleagues identified reductions 
in the 70-kD FAD subunit (SDH A) and the 30-kD iron-sulfur clus-
ter subunit (SDH B) of complex II in HD caudate and putamen that 
were disproportionate to decreases in the levels of calbindin, a marker 
of medium spiny neurons, thus implying that complex II subunit 
depletion preceded neuronal death (74). Furthermore, cultured stria-
tal neurons transfected with a pathogenic N-terminus Htt fragment 
showed decreased complex II enzymatic activity associated with selec-
tive depletion of SDH A and B, and cells were protected from death 
upon overexpression of complex II/SDH subunits in this model (74).

In a yeast model, a mutant Htt fragment suppressed mitochon-
drial respiration by suppressing the function of complexes II and III 
(75). Other cell models of HD have implicated selective deficiency 
of complex III in cellular pathophysiology (76). However, no sig-
nificant deficiency of respiratory chain complexes has been demon-
strated in presymptomatic patients (77) or in mice expressing full-
length mutant Htt (77), suggesting that respiratory chain defects 
are a secondary feature in the pathogenesis of HD (78). Neverthe-
less, selective reduction of respiratory chain complexes implies that 
certain pathophysiological mechanisms target them. One possible 
mechanism is oxidative stress, to which iron-sulfur cluster–contain-
ing proteins, including the SDH B subunit of complex II and the 
Rieske protein of complex III, are particularly vulnerable (79, 80).

Mitochondria, a source and a target of oxidative stress in HD. Oxidative 
stress is mediated by increases in ROS including superoxide (O2

–), 
hydrogen peroxide (H2O2), hydroxyl radical (OH–), and reactive 
nitrogen species such as peroxynitrite (ONOO–), and ROS impairs 
cellular function by degrading proteins, lipids, and nucleic acids. 
Evidence of enhanced oxidative stress in HD brains includes an 
increase in accumulation of lipofuscin, a product of unsaturated 
fatty acid peroxidation, that is most prominent in vulnerable striatal 
neurons (81). Other markers of ROS include strand breaks in DNA 
and the accumulation of 8-hydroxy-2′-deoxyguanosine (OH8dG) in 
HD brain and blood (82). Oxidative modification of proteins (pro-
tein carbonyls) and lipids (malondialdehyde and 4-hydroxynon-
enal) are also increased in HD brain and in animal models (83), and 
increased malondialdehyde is found in blood (84). Another indica-
tor of increased oxidative stress is the finding that oxidative defense 
mechanisms including mitochondrial and cytoplasmic superoxide 
dismutase (MnSOD and Cu-Zn SOD, respectively) are induced in 
HD brains (85) and transgenic animals (86). While the origin of 
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increased ROS in HD and HD models has not been identified con-
clusively, the main suspects are mitochondria, where it is estimated 
that 2 percent of electron flow in the respiratory chain escapes as 
superoxide, predominantly via complexes I and III. Respiratory 
chain defects increase ROS production, and complex II inhibition 
models of HD display evidence of oxidative stress (87).

Among the most vulnerable targets of oxidative stress is mitochon-
drial aconitase. Aconitase contains an iron-sulfur cluster that is read-
ily inactivated due to superoxide-mediated loss of iron at its catalytic 
site (88). In addition, the iron-sulfur cluster makes this protein highly 
susceptible to oxidative modification and ultimate degradation (89). 
In keeping with other evidence of increased oxidative stress in HD 
is the finding of a profound (more than 90%) decrease in aconitase 
activity in HD caudate, with lesser decreases in putamen (~70%) and 
cortex (~50%) (42). Decreased striatal aconitase with normal levels 
in cortex has also been found in the R6/2 transgenic mouse model 
(90). α-Ketoglutarate dehydrogenase (KGDH) has also been impli-
cated as a target of oxidative stress, though data for altered activity 
of this enzyme in HD is meager (91). Aconitase, KGDH, and SDH are 
enzymes of the TCA cycle. Defects in these enzymes in HD as well as 
the susceptibility of medium spiny neurons to SDH inhibition by 3-
NP and malonate suggest that these neurons are particularly vulner-
able to TCA cycle inhibition and that known and suspected targets 
of oxidative stress may restrict mitochondrial energy production in 
these cells by impairing TCA cycle function.

Cellular mechanisms of altered bioenergetics in HD
Impaired mitochondrial calcium handling. Mitochondria avidly accu-
mulate calcium and play an important role in buffering changing 
cytoplasmic calcium levels in response to neuronal activity (92). 
Mitochondrial calcium transport is powered by the mitochondrial 
proton gradient, and increased neuronal calcium modifies mito-
chondrial ATP production by uncoupling oxidative phosphoryla-
tion. Calcium overload may result in discharge of the mitochondri-
al membrane potential, opening of the mitochondrial permeability 
transition (MPT) pore, release of cytochrome c, and activation of 
cell death pathways (92). Increased calcium influx through NMDA 
receptors, increased mitochondrial susceptibility to calcium tran-
sients, or both may contribute to neuronal degeneration in HD. 
Mitochondria isolated from lymphoblasts of HD patients and the 
brains of transgenic mice have a reduced membrane potential and 
depolarize at lower calcium concentrations than control mito-
chondria (93). Immunocytochemical identification of N-terminal 
mutant Htt on neuronal mitochondrial membranes from trans-
genic mice and reproduction of the mitochondrial calcium defect 
by incubation of normal human lymphoblast mitochondria with a 
fusion protein containing a long polyglutamine repeat suggest that 
the mitochondrial calcium defect is a direct effect of mutant Htt 
on mitochondria (93). The reduced mitochondrial ATP levels and 
decreased ATP/ADP ratio found in mutant Htt-containing striatal 
cells is linked to increased calcium influx through NMDA recep-
tors, and cell ATP/ADP ratio is normalized by blocking calcium 
influx (49). Choo et al. (94) identified binding of both WT and 
mutant Htt to the outer mitochondrial membrane in mitochon-
dria from human neuroblastoma cells and from cultured striatal 
cells from WT and transgenic mice. They demonstrated increased 
sensitivity to calcium-induced opening of the MPT and release of 
cytochrome c in normal liver mitochondria incubated with mutant 
but not WT Htt, consistent with a direct effect of mutant Htt upon 
mitochondrial calcium handling (94).

A possible link between impaired intracellular transport and energy deficit. 
There are several possible ways in which altered intracellular transport 
might affect energy metabolism in HD. Full-length mutant Htt may 
impair mitochondrial motility in mammalian neurons through both 
a toxic gain of function from the polyglutamine tract and a loss of 
function of WT Htt (95). Altered mitochondrial trafficking precedes 
mitochondrial and neuronal abnormalities in both in vitro and in 
vivo murine models of HD (95). Although aggregates were suspected 
to impede mitochondrial trafficking (96), N-terminal fragments of 
mutant Htt alone were later shown to interfere with the association 
of microtubule-based transport proteins with mitochondria in vitro 
(97). Mutant Htt altered the distribution and reduced the transport 
rate of mitochondria together with lowered ATP levels in the synapto-
somal fraction isolated from knockin mouse brain (97). However, the 
mechanisms by which mutant Htt affects intracellular organelle traf-
ficking such as mitochondria are not fully understood (44). A recent 
study of HD brains identified a reduced number and altered distri-
bution of mitochondria within vulnerable, calbindin-positive striatal 
neurons that was more pronounced with disease progression (98). 
Reductions were seen preferentially in large- and medium-size mito-
chondria in conjunction with an increase in levels of Drp1 protein, 
a mediator of mitochondrial fission and, with disease progression, a 
decrease in levels of Mfn1, a mediator of mitochondrial fusion (98). 
These results support the view that altered mitochondrial dynamics 
represent an important mechanism of mitochondrial dysfunction 
contributing to the mismatch between energy supply and demand 
that is a recurring theme in HD and HD models.

Transcriptional deregulation contributes to altered bioenergetics. Several 
lines of evidence suggest that transcriptional dysregulation underlies 
the toxicity of mutant Htt. Whether it is mediated by aggregates, sol-
uble fractions of Htt, or by Htt itself, many transcription factors have 
been shown to be downregulated in HD. These include CREB-bind-
ing protein, TATA-binding protein, and Sp1/TAFII130 (99). Mutant 
Htt binds the tumor suppression gene p53 more avidly than does 
WT Htt and has been reported to increase p53 protein levels, nuclear 
localization, and transcriptional activity in neuronal cultures and 
transgenic mice (100). Augmented p53 activity was shown to medi-
ate mitochondrial membrane depolarization and a decrease in com-
plex IV activity, as indicated by the fact that p53 inhibition or genetic 
deletion ameliorated these changes in a cell culture model (100). A 
specific effect of mutant Htt upon p53 activity is suggested by the 
fact that p53 activity was not altered by another polyQ-containing 
protein, ataxin-1 (100). Mutant Htt has also been shown to directly 
decrease the expression of PGC-1α in the striatum of HD mice and 
patients through CREB-dependent transcriptional inhibition (45). 
PGC-1α is a transcriptional coactivator that regulates key energetic 
metabolic pathways in both brain and peripheral tissues (101). The 
possible role of PGC-1α in HD pathogenesis was initially suspect-
ed from the observation of selective striatal lesions in the PGC-1α 
knockout mouse (102). Downregulation of PGC-1α in HD striatum 
was then shown to affect mitochondrial energy metabolism, possibly 
by impairing oxidative phosphorylation (45). Conversely, HD stria-
tal neurons expressing exogenous PGC-1α were resistant to 3-NP 
treatment (103). Decreasing levels of PGC-1α were shown to parallel 
markers of mitochondrial dysfunction with disease progression in 
HD brains (98). The PPARγ agonist rosiglitazone has been shown to 
increase mitochondrial mass in the striatal cell model of HD and to 
prevent the decrease in mitochondrial membrane potential and the 
increase in oxidative stress that otherwise occurs when these cells are 
challenged with pathogenic increases in intracellular calcium levels 
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(104). Of note, PGC-1α polymorphisms in HD patients may account 
for some variability in symptoms onset (105). In addition, adipose-
derived stem cells slowed striatal degeneration and behavioral dete-
rioration of HD models while increasing PGC-1α expression (106). 
The implication that the PGC-1α dysfunction contributes to HD 
disease progression is not restricted to the brain (67). Thermoregula-
tory defects were found in the R6/2 mouse model, associated with 
impaired activation of brown fat (103). The expression of PGC-1α 
and its target genes were also decreased in muscle of HD transgenic 
mice as well as in muscle of HD patients (107).

Although PGC-1α function provides an important link between 
transcriptional dysregulation and mitochondrial dysfunction in HD, 
it does not readily explain a selective decrease in respiratory chain pro-
teins such as subunits of SDH/complex II in the pathophysiology of 
the disease (74). Moreover, mutant Htt may impair cellular bioenerget-
ics by affecting extra-mitochondrial pathways. This was suggested by 
the dissimilarity of gene expression profiles in the 3-NP models and 
the HdhQ111/Q111 knockin mouse, in which a gene-targeted replace-
ment of exon 1 of the mouse Hdh with a chimeric mouse/human exon 
1 codes for approximately 111 CAG repeats. Whereas both 3-NP and 
the HD mutation led to impaired energy homeostasis, only 3-NP 
altered nuclear-encoded mitochondrial gene expression (108).

Therapeutic approaches targeting the energy deficit in HD
As in other neurodegenerative disorders, proven disease-modifying 
drugs are not yet available in HD, and most therapeutic approaches 
to improving energetics have aimed at providing substrates designed 
to slow progression or otherwise compensate for the energy deficit in 
HD. One such therapy is creatine, which encompasses several poten-
tial neuroprotective effects such as buffering intracellular energy 
pools and stabilizing intracellular calcium concentrations (109). The 
identification of decreased creatine levels in brain tissues from R6/2 
mice (110) encouraged several trials of creatine supplementation in 
HD mouse models (110–113) despite a lack of overt benefit in HD 
patients so far (114, 115). Instead, more recent studies in which in vivo 
concentrations of brain metabolites were preserved by using high-res-
olution 1H-NMRS (116) or enzymatic microwave fixation (40) found 
increased brain levels of creatine and phosphocreatine in the same 
mouse model of HD. Moreover, clinical trials of antioxidants designed 
to slow the progression of the disease have been disappointing. One 
large-scale study assessing the potential neuroprotective effects of 
coenzyme Q10, a potential antioxidant and promoter of respiratory 
chain function, demonstrated a trend toward slowing the decline of 
the total functional capacity score over 30 months (117) but did not 
achieve statistical significance. Trials with higher doses are currently 
ongoing. Other antioxidant approaches were initiated in preclinical 
models (118, 119) but have not translated into clinical trials. Based on 
the hypothesis that there is a deficit of substrates for the TCA cycle in 
HD (60), a short-term therapeutic clinical trial was performed using 
an anaplerotic compound, triheptanoin, a triglyceride containing 
seven carbon fatty acids that is metabolized to acetyl-CoA and pro-
pionyl-CoA (a precursor of the TCA cycle intermediate, succinate). 
This study displayed encouraging results for the peripheral metabo-
lism in HD patients, and in particular oxidative phosphorylation in 
skeletal muscle (120). However, the benefit of anaplerotic approaches 
for brain energy metabolism remains to be established.

The identification of PGC-1α as a key component of HD patho-
physiology supports the use of therapies targeting mitochondrial 
biogenesis. Activation of the SIRT1 gene family by the polyphenol 
resveratrol potently induces mitochondrial activity through activat-
ing PGC-1α, as evidenced by increased oxidative-type muscle fibers, 
enhanced resistance to muscle fatigue, and increased tolerance to 
cold, all PGC-1α–dependent effects (121). Likewise, resveratrol was 
shown to partially suppress the deleterious effects of mutant poly-
glutamine in nematode, mouse, and mouse neuronal culture mod-
els (122, 123) and significantly reversed 3-NP–induced motor and 
cognitive impairment (124). In addition, treatments interfering with 
transcriptional deregulation, such as histone deacetylase inhibitors, 
were shown to improve mitochondrial dysfunction in striatal neu-
rons from HD mice through the regulation of calcium homeosta-
sis (125). Overall, the multiple functions of Htt in cell metabolism 
argue for combined therapeutic approaches in order to significantly 
alter the course of HD and improve energy metabolism, including 
restoring the normal function of Htt in intracellular transport.

Concluding remarks
Energy deficit is a prominent feature of HD. Energy deficit con-
tributes to the progression of the disease in the brain and can 
also be traced to the periphery, as reflected in weight loss in HD 
patients. Importantly, the onset of energy-related manifestations 
at the presymptomatic stages of the disease, i.e., alterations in 
brain and muscle metabolism as well as weight loss, underscore 
the fact that energy deficit is likely to be an early phenomenon 
in the cascade of events leading to HD pathogenesis. Studies of 
energy metabolism in HD are therefore worth pursuing to iden-
tify potential biomarkers as well as therapeutic targets. Although 
the data are not entirely concordant, biochemical studies support 
the view that mitochondrial dysfunction — impaired oxidative 
phosphorylation, TCA cycle dysfunction, and oxidative stress — is 
an important determinant of altered energy metabolism in HD. 
Impaired bioenergetics in HD likely represent downstream effects 
of both a mutant Htt toxic gain-of-function and a loss-of-function 
of the WT protein, which, nonetheless, may extend beyond mito-
chondrial dysfunction. Better understanding of the bioenergetics 
in HD will more fully illuminate the role of impaired intracellular 
transport and transcriptional dysregulation in the disease. While 
treatments designed to improve energy metabolism in the brain 
and peripheral organs of patients and presymptomatic individu-
als may not reverse the primary defect in HD on their own, they 
are likely to significantly alter the course of the disease, delaying 
disease onset and the pace of disease progression.
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