Figure S1. *Identification of immune cells in lung tissues.* The general schemata for flow cytometry used to identify immune cells is shown. The cell surface marker used were as follows: eosinophils, SiglecF⁺ CCR3⁺ (A); Th1 lymphocytes, CD45⁺CD3⁺IFN γ^+ (B); Th2 lymphocytes, CD45⁺CD3⁺IL4⁺ (B); Th17 lymphocytes, CD45⁺CD3⁺IL4⁺ (B); ILCs, Lin⁻IL7Ra⁺Flt3⁻ST2⁺, IL-17RB⁺ or ICOS⁺ (C); myeloid dendritic cells (mDCs), CD45⁺ CD11b⁺ CD11c⁺ B220⁻ (D); for mDCs we used CD45⁺ CD11b⁺ CD11c⁺ B220⁻ CD103⁺ (D); plasmacytoid dendritic cells (pDCs), CD45⁺ CD11b⁻ CD11c⁺ B220⁺ (D). Activated mDCs and pDCs were identified using the surface expression of CD86 and I-A/E on these cells (D).

Figure S2. *Expression of FOXA3 causes goblet cell differentiation.* Immunofluorescence confocal microscopy is shown for Muc5ac (white) Muc5B (red), Scgb1a1 (green) (upper panels) and acetylated tubulin (white) (lower panels) from airway sections for *Scgb1a1.rtTA/Foxa3* transgenic mice and control single transgenic littermates treated with doxycycline from E16 to PN15 at the time of sacrifice. In controls, Scgb1a1 staining was present at high levels in Club cells. Expression of FOXA3 induced goblet cell metaplasia and Muc5AC and Muc5B staining in goblet cells in which Scgb1a1 staining, while present, was decreased (A). Neither Muc5b nor Scgb1a1 were present in ciliated cells identified by acetylated tubulin staining (white) (B). Scale bar: 50 μm.

Figure S3. Spdef^{+/+} and Spdef^{/-} induces similar levels of serum IgE and II4 mRNA in the splenocytes and peripheral lymph nodes. The adult Spdef^{+/+} and Spdef^{/-} mice were injected intraperitoneally with 200µl of donkey anti-mouse IgD serum. On day 7, serum, spleen and LNs (inguinal and axillary) were collected. Serum total IgE and IgG1 in Spdef^{+/+} (white bars) and Spdef^{-/-} mice (black bars) was assessed by ELISA (A,B). *Il4* mRNA in spleen and lymph nodes was assessed by qRT-PCR (C,D). Graphs represent mean \pm S.E., significance was calculated using Student's t-test (2-tailed, unpaired), n=3-4 in each group. Serum total IgE and HDM specific IgE and IgG1 were assessed by ELISA in adult (E-G) and PN15 (H-J) Spdef^{+/+} and Spdef^{-/-} mice. Graphs represent mean \pm S.E., significance was analyzed using Student's t-test (2-tailed, unpaired), n=4-6 for each group.

Figure S4. *SPDEF mediates FOXA3 induced Th2 responses.* Control littermate, *Scgb1ab-rtTA/Foxa3/Spdef*^{+/+} (red line), *Scgb1ab-rtTA/Foxa3/Spdef*^{+/-} (blue line) and *Scgb1ab-rtTA/Foxa3/Spdef*^{-/-} (green line) were placed on doxycycline from E16.5 – PN15 and euthanized after testing in Penh (A). Graphs represent mean \pm S.E, *** = p<0.001 and # = p<0.05, analyzed using two-way Anova with Bon-Ferroni post test, n=6 mice in each group. Lung tissue was obtained from the pups at PN15 for analysis. *Scgb1ab-rtTA/Foxa3/Spdef*^{-/-} pups did not develop spontaneous eosinophilic inflammation or goblet cell metaplasia as assessed by H&E and compared with *Scgb1ab-rtTA/Foxa3/Spdef*^{+/-} (light gray bars), *Scgb1ab-rtTA/Foxa3/Spdef*^{+/-} (black bars), *Scgb1ab-rtTA/Foxa3/Spdef*^{+/-} (dark gray bars) (D). Graphs represent mean \pm S.E., * p<0.05 analyzed using two-way Anova with Bon-Ferroni post test, n=6 mice for each group. *Scgb1ab-rtTA/Foxa3/Spdef*^{+/+} (red line) and *Scgb1ab-rtTA/Foxa3/Spdef*^{+/+} (red line) and *Scgb1ab-rtTA/Foxa3/Spdef*^{+/+} (black bars), *Scgb1ab-rtTA/Foxa3/Spdef*^{+/+} (black bars) (D).

rtTA/Foxa3/Spdef^{+/-} (green line) were placed on doxycycline from E16.5 – PN15 and exposed to a single treatment of intranasal HDM and AHR tested by Penh (B) 2 days later, demonstrating inhibition of AHR on the *Spdef*^{+/+} background. Graphs represent mean \pm S.E, * = p<0.001, analyzed using two-way Anova with Bon-Ferroni post test, n=6 mice in each group.

Figure S5. Expression of FOXA3 in airway epithelial cells enhanced HDM induced goblet cell differentiation, inflammation and AHR. Dams were placed on doxycycline from E16.5-PN17. On PN15 Scgb1a1-rtTA/Foxa3 (black bars) and control (white bars) pups were exposed to a single treatment with intranasal HDM and euthanized 2 days later. AHR was assessed by Penh and compared to saline treated littermate controls (A). Graphs represent mean \pm S.E *** = p<0.001 and # = p<0.05, using two-way Anova with Bon-Ferroni post test, n = 6 mice in each group. Lung histology and IHC staining for of FOXA3 and SPDEF are shown (B). mRNAs associated with goblet cell differentiation, dendritic cell and Th2 inflammatory responses were assessed in whole lung by qRT-PCR (B and C). Graphs represent mean \pm S.E., *= p<0.05 using Student's t-test (2-tailed, unpaired), n=6 in each group.

Figure S6. Chromatin immunoprecipitation sequencing (ChIP-Seq) identifies TSLP and CCL17 as potential transcriptional targets of FOXA3. ChIP-Seq was performed on BEAS2B cells after infection with lenti-Foxa3 as described by Chen et al., 2014 (24). Peaks were visualized as custom tracks in the UCSC genome browser with HG19 as reference genome. UCSC Genome browser tracks depict FOXA3 ChIP-Seq peaks located in the promoter and 3" UTL of TSLP gene, in the first intronic and 3' intergenic region (near 3'-UTR of the CCL17 gene, respectively. R0 = peak calling with no redundant sequences.

Figure S7. Anti-TSLP inhibits FOXA3 induced Th2 lung inflammation. Dams were placed on doxycycline from E16.5–PN8. Scgb1a1-rtTA/Foxa3 (black bar) and littermate single transgenic control pups (white) were treated with 50 ug of anti-TSLP antibody on PND3 and lung tissues obtained on PND8. Anti-TSLP decreased eosinophilic infiltration in H and E (A), and decreased MUC5B immunohistochemistry staining (A). Foxa3, Spdef, Muc5ac, Csf2, Tslp, Il4, Il13, Ccl17, 115, Ear11, Ccl11, and Ccl24 mRNAs were assessed by qRT-PCR (B). The graphs represent mean \pm S.E.,*, p<0.05 analyzed using two-way Anova with Bon-Ferroni post test, n= 6 for each group.

Mouse Line		Primer sequence
Scgb1a1-rtTA (line 2)	Forward	ACT GCC CAT TGC CCA AAC AC
	Reverse	AAA ATC TTG CCA GCT TTC CCC
<i>Otet7-TRE2-Spdef</i>	Forward Reverse	TTC CAG GAG CTG GGC GGT AA GGT CCA TGG TGA TAC AAG GGA CAT
Otet7-Foxa3-IRES-EGFP	Forward Reverse	AGC AAA GAC CCC AAC GAG AAG C CAA ACA ACA GAT GGC TGG CAA C
Spdef'-	Primer 1 Primer 2 Primer 3 Primer 4	CCC ACC TCC TAT GTC AGC CAT GGC CAA TCC TGT ACC ATA TCT GGC ATG G CAG ATT AGA GAT GCA CAA CCT GCC GCA TCG CAT TGT CTG AGT AGG TGT CA

Supplemental Table 1

Genes	TaqMan Probes	Source	
EUK 18S rRNA	4352930	Applied Biosystems	
Foxa3	Mm00484714_m1	Applied Biosystems	
Spdef	Mm00600221_m1	Applied Biosystems	
Muc5ac	Mm01276725_g1	Applied Biosystems	
Muc5b	Mm00466391_m1	Applied Biosystems	
Tslp	Mm01157588_m1	Applied Biosystems	
<i>Il33</i>	Mm01195786_m1	Applied Biosystems	
Csf2	Mm01290062_m1	Applied Biosystems	
Ccl20	Mm01268753_g1	Applied Biosystems	
1125	Mm00499822_m1	Applied Biosystems	
<i>Il4</i>	Mm00445259_m1	Applied Biosystems	
1113	Mm00434204_m1	Applied Biosystems	
Ccl17	Mm01244826_g1	Applied Biosystems	
Il17a	Mm00439618_m1	Applied Biosystems	
Ifng	Mm01168134_m1	Applied Biosystems	
Earl1	Mm00519056_s1	Applied Biosystems	
Ccl11	Mm00441238_m1	Applied Biosystems	
Ccl24	Mm00444701_m1	Applied Biosystems	
115	Mm00439646_m1	Applied Biosystems	
Acta2	Mm00725412_s1	Applied Biosystems	

Supplemental Table 2

Flow Antibodies	Clone	Source
CD3e FITC	145-2C11	BioLegend
CCR3 FITC	J073E5	BioLegend
IL7Rα FITC	A7R34	BioLegend
CD86 FITC	PO3	BioLegend
I-A/I-E PE	M5/114.15.2	BioLegend
IL13 PE	eBio13A	eBioscience BD
SiglecF PE	E50-2440	Pharmingen
IL33Ra PE	DIH9	BioLegend
CD11b Pacific Blue	M1/70	BioLegend
ICOS Pacific Blue	C398.4A	BioLegend
CD4 Pacific Blue	RM4-4	BioLegend
CD45 Alexa Fluor 700	30-F11	BioLegend
CD3/Ly-6G(Ly-6C)/CD11b/CD45R/Ter-119 Alexa Fluor 700	Cat# 79923	BioLegend
CD103 PerCP/Cy5.5	2 E 7	BioLegend
IL17A PerCP/Cy5.5	1C11- 18H10.1	BioLegend
CD11c APC	N418	BioLegend
Flt3 APC	A2F10	BioLegend
IFNγ APC	XMG1.2	BioLegend
B220 PE/Cy7	RA3-6B2	BioLegend
IL4 PE/Cy7	11B11	BioLegend
Goat anti-rat IgG PE/Cy7	Poly4054	BioLegend
IL17RB Purified Rat Monoclonal IgG1	752101	R&D

Supplemental Table 3

Figure S2

Figure S5

Figure S6

