[HTML][HTML] Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis

SL Pompura, A Wagner, A Kitz… - The Journal of …, 2021 - Am Soc Clin Investig
SL Pompura, A Wagner, A Kitz, J LaPerche, N Yosef, M Dominguez-Villar, DA Hafler
The Journal of clinical investigation, 2021Am Soc Clin Investig
FOXP3+ Tregs rely on fatty acid β-oxidation–driven (FAO-driven) oxidative phosphorylation
(OXPHOS) for differentiation and function. Recent data demonstrate a role for Tregs in the
maintenance of tissue homeostasis, with tissue-resident Tregs possessing tissue-specific
transcriptomes. However, specific signals that establish tissue-resident Treg programs
remain largely unknown. Tregs metabolically rely on FAO, and considering the lipid-rich
environments of tissues, we hypothesized that environmental lipids drive Treg homeostasis …
FOXP3+ Tregs rely on fatty acid β-oxidation–driven (FAO-driven) oxidative phosphorylation (OXPHOS) for differentiation and function. Recent data demonstrate a role for Tregs in the maintenance of tissue homeostasis, with tissue-resident Tregs possessing tissue-specific transcriptomes. However, specific signals that establish tissue-resident Treg programs remain largely unknown. Tregs metabolically rely on FAO, and considering the lipid-rich environments of tissues, we hypothesized that environmental lipids drive Treg homeostasis. First, using human adipose tissue to model tissue residency, we identified oleic acid as the most prevalent free fatty acid. Mechanistically, oleic acid amplified Treg FAO–driven OXPHOS metabolism, creating a positive feedback mechanism that increased the expression of FOXP3 and phosphorylation of STAT5, which enhanced Treg-suppressive function. Comparing the transcriptomic program induced by oleic acid with proinflammatory arachidonic acid, we found that Tregs sorted from peripheral blood and adipose tissue of healthy donors transcriptomically resembled the Tregs treated in vitro with oleic acid, whereas Tregs from patients with multiple sclerosis (MS) more closely resembled an arachidonic acid transcriptomic profile. Finally, we found that oleic acid concentrations were reduced in patients with MS and that exposure of MS Tregs to oleic acid restored defects in their suppressive function. These data demonstrate the importance of fatty acids in regulating tissue inflammatory signals.
The Journal of Clinical Investigation