Review

Abstract

The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration.

Authors

Nikolaos G. Frangogiannis

×

Abstract

Steroid hormones mediate critical lineage-specific developmental and physiologic responses. They function by binding their cognate receptors, which are transcription factors that drive specific gene expression programs. The requirement of most prostate cancers for androgen and most breast cancers for estrogen has led to the development of endocrine therapies that block the action of these hormones in these tumors. While initial endocrine interventions are successful, resistance to therapy often arises. We will review how steroid receptor–dependent genomic signaling is affected by genetic alterations in endocrine therapy resistance. The detailed understanding of these interactions will not only provide improved treatment options to overcome resistance, but, in the future, will also be the basis for implementing precision cancer medicine approaches.

Authors

Anna C. Groner, Myles Brown

×

Abstract

Following the first isolation of nuclear receptor (NR) genes, genetic disorders caused by NR gene mutations were initially discovered by a candidate gene approach based on their known roles in endocrine pathways and physiologic processes. Subsequently, the identification of disorders has been informed by phenotypes associated with gene disruption in animal models or by genetic linkage studies. More recently, whole exome sequencing has associated pathogenic genetic variants with unexpected, often multisystem, human phenotypes. To date, defects in 20 of 48 human NR genes have been associated with human disorders, with different mutations mediating phenotypes of varying severity or several distinct conditions being associated with different changes in the same gene. Studies of individuals with deleterious genetic variants can elucidate novel roles of human NRs, validating them as targets for drug development or providing new insights into structure-function relationships. Importantly, human genetic discoveries enable definitive disease diagnosis and can provide opportunities to therapeutically manage affected individuals. Here we review germline changes in human NR genes associated with “monogenic” conditions, including a discussion of the structural basis of mutations that cause distinctive changes in NR function and the molecular mechanisms mediating pathogenesis.

Authors

John C. Achermann, John Schwabe, Louise Fairall, Krishna Chatterjee

×

Abstract

Peroxisome proliferator–activated receptors (PPARs) regulate energy metabolism and hence are therapeutic targets in metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. While they share anti-inflammatory activities, the PPAR isotypes distinguish themselves by differential actions on lipid and glucose homeostasis. In this Review we discuss the complementary and distinct metabolic effects of the PPAR isotypes together with the underlying cellular and molecular mechanisms, as well as the synthetic PPAR ligands that are used in the clinic or under development. We highlight the potential of new PPAR ligands with improved efficacy and safety profiles in the treatment of complex metabolic disorders.

Authors

Vanessa Dubois, Jérôme Eeckhoute, Philippe Lefebvre, Bart Staels

×

Abstract

Members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors play important roles in reproduction, development, and physiology. In humans, genetic mutations in NRs are causes of rare diseases, while hormones and drugs that target NRs are in widespread therapeutic use. The present issue of the JCI includes a series of Review articles focused on specific NRs and their wide range of biological functions. Here I reflect on the past, present, and potential future highlights of research on the NR superfamily.

Authors

Mitchell A. Lazar

×

Abstract

Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.

Authors

Sofie J. Desmet, Karolien De Bosscher

×

Abstract

The nuclear receptors PPARα (encoded by NR1C1) and farnesoid X receptor (FXR, encoded by NR1H4) are activated in the liver in the fasted and fed state, respectively. PPARα activation induces fatty acid oxidation, while FXR controls bile acid homeostasis, but both nuclear receptors also regulate numerous other metabolic pathways relevant to liver energy balance. Here we review evidence that they function coordinately to control key nutrient pathways, including fatty acid oxidation and gluconeogenesis in the fasted state and lipogenesis and glycolysis in the fed state. We have also recently reported that these receptors have mutually antagonistic impacts on autophagy, which is induced by PPARα but suppressed by FXR. Secretion of multiple blood proteins is a major drain on liver energy and nutrient resources, and we present preliminary evidence that the liver secretome may be directly suppressed by PPARα, but induced by FXR. Finally, previous studies demonstrated a striking deficiency in bile acid levels in malnourished mice that is consistent with results in malnourished children. We present evidence that hepatic targets of PPARα and FXR are dysregulated in chronic undernutrition. We conclude that PPARα and FXR function coordinately to integrate liver energy balance.

Authors

Geoffrey A. Preidis, Kang Ho Kim, David D. Moore

×

Abstract

Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.

Authors

Laurie A. Silva, Terence S. Dermody

×

Abstract

Many RNA species have been identified as important players in the development of chronic diseases, including cancer. Over the past decade, numerous studies have highlighted how regulatory RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play crucial roles in the development of a disease state. It is clear that the aberrant expression of miRNAs promotes tumor initiation and progression, is linked with cardiac dysfunction, allows for the improper physiological response in maintaining glucose and insulin levels, and can prevent the appropriate integration of neuronal networks, resulting in neurodegenerative disorders. Because of this, there has been a major effort to therapeutically target these noncoding RNAs. In just the past 5 years, over 100 antisense oligonucleotide–based therapies have been tested in phase I clinical trials, a quarter of which have reached phase II/III. Most notable are fomivirsen and mipomersen, which have received FDA approval to treat cytomegalovirus retinitis and high blood cholesterol, respectively. The continued improvement of innovative RNA modifications and delivery entities, such as nanoparticles, will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. Here we summarize the latest promises and challenges of targeting noncoding RNAs in disease.

Authors

Brian D. Adams, Christine Parsons, Lisa Walker, Wen Cai Zhang, Frank J. Slack

×

Abstract

Regulatory B cells (Bregs) modulate immune responses predominantly, although not exclusively, via the release of IL-10. The importance of human Bregs in the maintenance of immune homeostasis comes from a variety of immune-related pathologies, such as autoimmune diseases, cancers, and chronic infections that are often associated with abnormalities in Breg numbers or function. A continuous effort toward understanding Breg biology in healthy individuals will provide new opportunities to develop Breg immunotherapy that could prove beneficial in treating various immune-mediated pathologies. In this Review, we discuss findings regarding human Bregs, including their mechanisms of suppression and role in different disease settings. We also propose several therapeutic strategies targeting Bregs for better management of immune disorders.

Authors

Claudia Mauri, Madhvi Menon

×

No posts were found with this tag.